A little background on work done on the tel may prove helpful.
Information of the mapping of the tel can be found at http://facweb1.redlands.edu/fac/jim_bentley/talks/elFaraSMap.ppt
Information of the surface survey can be found at http://facweb1.redlands.edu/fac/jim_bentley/talks/elFaraSSurvey.ppt
Get the sherds data from the web.
 circles = read.csv("http://facweb1.redlands.edu/facultyfolder/jim_bentley/downloads/math312/circles9812.csv")
 names(circles)##  [1] "EFT"      "EM"       "NFT"      "NM"       "HFT"      "HM"      
##  [7] "SESSION"  "ESTEM"    "ESTNM"    "ESTHM"    "THEOCODE" "DATE"    
## [13] "AREA"     "COLUNIT"  "RADIUS"   "MB"       "LB"       "IAI"     
## [19] "IAII"     "IAIII"    "PERS"     "HELL"     "ROM"      "BYZ"     
## [25] "MA"       "OTT"      "UNIDENT"  "TOTAL"    "PH"       "HR"      
## [31] "PR"       "NOTE" dim(circles)## [1] 70 32From the above we can see that there are 32 variables and 70 observations. Two of the variables contain information on the number of iron age II sherds found in each circle and the easting of the center of the circle in meters.
 circles$IAII##  [1]  0  3  0  0  0  2  0  1  6  0  0  2  0  0  0  0  0  1  0  1  3  2  1
## [24]  2  2  0  0  0  0  0  5  5  2  0  0  0  0  0  0  0 16  8  0  7  0  2
## [47]  0  8  2  0  0  1  0  7  5  3  5  1  0  1  0  7  4 12  3  0  0  1  1
## [70]  3 circles$ESTEM##  [1]       NA       NA 100703.6 100704.3 100693.1 100682.7 100698.8
##  [8] 100678.4 100669.1 100686.2 100668.4 100692.6 100689.6 100678.1
## [15] 100683.0 100671.8 100670.4 100695.5 100688.4 100660.5 100648.8
## [22] 100672.0 100675.7 100663.4 100639.2 100641.6 100625.3 100624.9
## [29] 100630.4 100635.5 100628.1 100613.9 100609.7 100594.4 100598.3
## [36] 100654.4 100643.1 100647.0 100630.3 100634.8 100624.3 100675.1
## [43] 100667.0 100681.8 100676.2 100665.8 100652.0 100655.1 100688.0
## [50] 100656.2 100696.5 100702.3 100674.6 100636.6 100640.9 100597.7
## [57] 100606.6 100594.6 100590.3 100598.5 100585.5 100596.0 100610.9
## [64] 100627.0 100637.2 100642.0 100608.6 100628.5 100641.7 100618.0 length(circles$IAII)## [1] 70 length(circles$ESTEM)## [1] 70The first two rows are trash. We can remove them.
 circles=circles[-c(1:2),]
 dim(circles)## [1] 68 32We can let our \(X_i\) represent the Iron Age II sherds.
 x = circles$IAII
 table(x)## x
##  0  1  2  3  4  5  6  7  8 12 16 
## 34  9  8  4  1  4  1  3  2  1  1The circles with no sherds are meaningless as they do not affect the sum. We remove them.
 x.no0 = x[x != 0]
 length(x.no0)## [1] 34 x.no0##  [1]  2  1  6  2  1  1  3  2  1  2  2  5  5  2 16  8  7  2  8  2  1  7  5
## [24]  3  5  1  1  7  4 12  3  1  1  3We can now compute \(\Lambda\) and the associated p-values.
 (n <- length(x))## [1] 68 (df <- n-1)## [1] 67 (Lambda <- 2*t(x.no0)%*%log(x.no0/mean(x)))##          [,1]
## [1,] 267.0377 1-pchisq(Lambda,df)##      [,1]
## [1,]    0 (test.stat <- (n-1)*sqrt(var(x))/mean(x))## [1] 107.3201 1-pchisq(test.stat,df)## [1] 0.001288988A variogram helps us see how the sherd counts vary across the tel.
 dists=dist(circles[,c("ESTEM","ESTNM")])
 summary(dists)##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##   8.113  45.916  74.171  77.921 105.964 188.652 breaks=seq(0,190,l=11)
 vl = variog(coords=circles[,c("ESTEM","ESTNM")],data=circles$IAII,breaks=breaks)## variog: computing omnidirectional variogram vl.summary = cbind(c(1:10),vl$v,vl$n)
 colnames(vl.summary) = c("lag","semi-variance","# of pairs")
 vl.summary##       lag semi-variance # of pairs
##  [1,]   1      5.692661        109
##  [2,]   2     10.593220        295
##  [3,]   3      9.000000        373
##  [4,]   4      9.597744        399
##  [5,]   5     10.277778        351
##  [6,]   6      8.878333        300
##  [7,]   7      9.400000        210
##  [8,]   8     10.964029        139
##  [9,]   9     14.388889         81
## [10,]  10      7.500000         21 plot(vl,type="b")